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[6], [7]. This quantity was calculated by using the expressions for
Cex given earlier, and the results obtained are shown in Fig. 2. The
same quantity has been computed by James and Tse [7] by using an
alternative approach, and their results are also included in Fig. 2 for
ease of comparison. It is evident that the numerical results obtained
in this short paper compare favorably with Farrar and Adams, as well
as others.

It may be useful to quote some typical computation time for cal-
culating C(}) by (12). Typical time of the CDC G-20 computer was
about 60 s for this calculation (execution time). The above computer
is approximately ten times slower than the IBM 360/75. To minimize
the computation time for Cex given in (14), the choice of ! is impor-
tant. A numerical experiment shows that, if l;]O W, C() increases
linearly with .. Hence the limiting process can be omitted for this
choice of I. Furthermore, since the computation of C, requires less
than 5 s (execution time), the computation time of Ce is also about
60 s.

In conclusion, the method described in this short paper has many
advantages, one of which is its numerical efficiency. Another feature
is that it is quite general, since many other types of junctions and
finite structures can be solved by the present method, either in its
present form or with some modifications. Some examples of such
structures are gaps in the uniform strip, T junction, etc., that are
currently under investigation.

Finally, it should be mentioned that Maeda [8] has recently re-
ported a method for analyzing the gap structure in the microstrip
line. The approach outlined in this short paper is believed to be
numerically more efficient, since the expression for Green’s function
in the transform domain is a closed form in contrast to a slowly con-
verging series in the space domain.
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A Quasi-Dynamic Method of Solution of a Class of
Waveguide Discontinuity Problems

LEONARD LEWIN axp JAMES P. MONTGOMERY

Absfract—1It is shown that, if expansion terms of all the modes
appearing in the Green’s function for the problem are retained, the
singular integral equation method can be made to apply by generating
a differential equation for this integral. The solution of the differen-
tial equation is straightforward, and the inversion of the resulting
integral equation then follows standard methods. The process is
applied in detail to the case of the capacitive diaphragm, and the
results compared to the quasi-static method with correction terms.
The results are close for small guide widths, but the present method
should give superior results if the guide width permits some over-
moding.
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INTRODUCTION

The class of problems referred to is that in which the solution can
be formulated in terms of a transversely varying aperture field or
obstacle current. Typically, it includes inductive and capacitive dia-
phragms, gratings, step discontinuities, bifurcations, inhomogeneous
waveguide junctions, and transversely magnetized ferrite bound-
aries. .

Early researchers used integral equation formulations [1], [2],
sometimes coupled with solutions from known electrostatic problems
[1]-{3] to establish a solution. These solutions are known as quasi-
static solutions and they depend essentially on approximations of
the type I'n = (n2x2/b2—k%)V2~nx /b for the attenuation constant for
higher order modes. The approximation is poorest for the lowest order
modes, and correction terms involving the small quantity (T'» —nx/b)
for small # can also be incorporated into the solution.

An extension of the method using singular integral equations [4]
still was based on treating the lowest order modes preferentially in
this way. At the other extreme [5], quasi-optical methods based on
the high-frequency limit calculate the diffraction from edge discon-
tinuities. Mittra [6] using a modified residue calculus technique, has
extended the Wiener—Hopf type of solution to obtain good approxi-
mations to some waveguide configurations.

The present short paper indicates a somewhat different approach
based on an approximate form for the attenuation constants to be
used for all the higher order modes. The relation (T,/zr)=1
—(kb/n=)?/2 — (kb/nx)t/8 « + « enables the kernel of the integral
equation to be expressed as a truncated series in powers of (kb/7)? to
which all the higher modes contribute. For want of a better name this
method will be called guasi-dynamic. As a further refinement it is
still possible to incorporate higher order correction terms involving
the small quantity (bTn/nr—1— (Bb/nw)2/2— - - - ) for small #; and
this must in any case be done if kb is large enough to permit a lower
order mode to propagate. The expansion for large # is still valid and
useful, even if kb is not all that small.

THE ForM oF THE KERNEL

The difficulty in extending the singular integral equation method
to the more complex kernels here considered arises from the fact that
sums of the form Zf ~1 Cos n8/n¥ are transcendental functions
(Clausen functions) for » >0, with # integral, and it is quite impracti-
cal to make needed transformations like cos § =c+s¢ on a term-by-
term basis. The clue to a method of dealing with them springs from
the observation that application of the operator (d/d8)*" reduces
them to the » =0 form, which is tractable. Hence if the series for 'y is
truncated after N terms, the problem can be reduced essentially to
one of solving a differential equation of order 2N with constant coeffi-
cients. As with the quasi-static methods, to which the present method
obviously has an affinity, the real problem then becomes one of evalu-
ating the various constants that arise, and which here appear in the
form of integrals involving the Clausen functions. Whereas, in the
quasi-static method, the integrals give rise to elliptic functions, with
trigonometric and logarithmic forms as special cases, in the present
instance the functions involved are the polylogarithms [7], which,
fortunately, are easy to handle and are well tabulated.

As an example to illustrate this method we solve the problem of a
symmetrical capacitive diaphragm, and compare the result to the
quasi-static solution with correction terms. Although the intermedi-
ate stages seem somewhat formidable, it is encouraging to find that
the final expression for the capacitance is a quite simple expression,
which can be readily related to the quasi-static solution. The form of
aperture field is also relatively simple.

The results of this method are likely to be most useful for calcu-
lating aperture fields, mode coupling coefficients, and obstacle pa-
rameters in situations in which the quantity kb lies in the small to
intermediate range, i.e., low-frequency to slightly overmoded condi-
tions. Regular gratings are similarly analyzed, using Floquet’s
theorem to express the fields in terms of a single grating characteris-
tic.

CAPACITIVE DIAPHRAGM SOLUTION

Fig. 1 shows a parallel plate arrangement of spacing b with a dia-
phragm with aperture from y=d to b—d.

The transition to rectangular guide of width @ can be made by re-
placing k by &' =k(1 —7\2/4a?)1/? at the end of the analysis. Similarly,
T’ and &’ have A replaced by A, in their definitions. Writing 8 ==d/b,
0==y/b, ¢==y'/b, and Tn=n®x?/b2—kH)Y? the equation to be
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Fig. 1. Capacitive diaphragm.

solved for the aperture field E(¢) can be put in the form [4]

1 p=# 2k T# 2 nf
== [ E@as + 22 [ TR TRy,
TY g m B 1 T

B<o<r—8 ()

The reflection coefficient R in the guide is given by
1 pm8
1+ &=~ [ E@s @
wJg

and the normalized susceptance B, one of the objects of our calcula-
tion, is related to R by

B = %R/(1 + R). ®3)

To solve (1), differentiate with respect to 8, and replace nr/bI', by
the second-order approximation

nw /by == 1 4+ a?/n?,
Then (1) becomes

where o = 2b2/A% 4)

B L
fﬁ E$) 2 sinnd cosns(l + a2/ndde =0, B<9<z—B. (5
1

In the absence of the term in a2/n2 this would be of the same form as
appears in the singular integral equation method. In the present in-
stance, however, the corresponding expression will not be zero, but
some function of 8, g(6) say, where we expect g(8) to be of order a2
Hence we can write

g ®
fﬁ E(@) X sinnd cosngdp = g(9), B<O<m—B (6
1

If we knew g(8), (6) could be solved by standard techniques. To find
g(8), subtract (5) from (6).

ot [ Tr £ . <7>
8 1 n
Differentiating twice, and using (6) gives
o’y = d%/de*. (8)
Hence
2® = A sinh [a(6 — 7/2)] + A’ cosh [a(® ~ z/2)] )

with 4 and 4’ to be determined. The solution is put in this form be-
cause, in the present case of the symmetrical diaphragm, (1) is sym-
metrical about the guide center §==/2, and hence g(8), which is
related to (1) by a differentiation, is antisymmetrical. By inspection
A’ is zero, and, consistent with our expansion in powers of «, only the
first power of an expansion of (9) in & need be retained. Hence

20 = Ada(®@ — w/2) (10)

to O(e*) since, as will be shown, 4 =0(a).
Equation (6) is now ready for solution by the singular integral
equation technique, using the relation

1 sin

Zl:sinnﬂcos'mﬁ = (11)

2 cos¢ — cos@ ’
(As discussed in [4] the use of the above equation requires that cer-
tain integrals arising should be taken as principal values. This is im-
plicit in what follows.)

Substituting (11) into (6) and writing

cos¢ = sy, cos® = s§ s = cos (wd/b)

and

E(p)de = F(n)dn (12)
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we get
1 —
f Flndn _ Z,Sg(o), —1<t<1. (13)
1n—¢& sin @
The solution is
1 , . 2asA 16 — n/2) (1 — gL
F) = (1 — 92112 I:C + w2 f_l sin 8 dE] (14

with C’ arbitrary and 6 given by (12).

The integration is performed in the Appendix, and the constant A
is there derived by taking the limiting value from (7) as 8—=/2. In
terms of E(8), and a new constant C, (14) becomes

sin ¢ sin ¢+ (s2— cos? ¢) 1/2
E(@)=C [(s”—cos“ )12 (1—s?)1r2 ]

Apart from a determination of C, (15) gives the form of the aperture
field as a function of ¢ =my/b.

To determine C we must return to (1), the undifferentiated form
of the integral equation, insert (15) for E(¢), and carry out the indi-
cated integrations. It is here that the calculations, outlined in the
Appendix, become a little testing. With C determined (2) gives R and
(3) the susceptance. The final result, after replacing 2 by &’ (or A by

A) is
5= (-  K) (16)

K = Lis(1) — Lis(s?) + 2 log sLis(s?). an
The polylogarithms [7], which are well tabulated, are defined by
= =log (1 — ‘
= Zx”/n2= _f de
1 0 X
2 Lis(x) d
x

+a?log s log (15)

where

Lia(x)

Lig(x) = ix"/n3 = fo (18)

COMPARISON WITH THE QUAsI-StATiC RESULTS

The relevant formula with two correction terms included can be
found in [2, eq. (3.119)]. Taking the 8. correction coefficients small
so that their products can be neglected, the expression to compare
with (17) has K replaced by K, where

= (1 — 21 + (3s2 — 1)2/8]. (19)

Equation (17) is plotted in Fig. 2 and, on an enlarged scale, so is the
difference K—~K,. It is seen that numerically the two expressions
behave quite similarly. The difference is greatest when s is small,
since more higher order modes are then generated.

HicHER ORDER SOLUTIONS

Equation (16) can be improved in two directions. More terms
could be retained in the expansion (4). Alternatively, or in addition,
the right-hand side of (5) could be augmented with the exact form of
the lowest order modes less the dominant expansion terms already
considered in (4). For example, in the case of the symmetric capaci-
tive diaphragm, the right-hand side of (5), instead of zero, could be
(since odd-n terms integrate to zero),

L)
—As f E(¢) sin 26 cos 2¢de
[

with
= (2r/bFy — 1 — &'?/4). (20)

(The transition to k' and A, has been anticipated.) This term is O (a%)
and it would not be consistent to retain products of higher order.
Hence E(¢) in (20) need be only the first term in (15), unless b is
large enough for the 7 =2 mode to propagate, when the additional
O(a?) term does need to be retained. Apart from this case, the extra
integrations needed to cope with (20) have already been done in ob-
taining {2, eq. (3.119) ], and quoting from there, with the sole differ-
euce of using A instead of §; we get an addition to the expression in
the brackets in (16) of

As(1 — sD2/(1 4 Assh. (21)

The use of more terms in (4) would lead to expressions like 7r/bT's
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Fig. 2. Coefficients K and Ko as a function of s,

= 1+a?/n?+3a/8n4, for example. The equation for g(8) would be-
come

dig/do* — a%d%/d6? + 3a'g/8 = 0. (22)
To order ab this gives
g0 = 4al0 — 7/2) + Ba®(® — x/2)% (23)

‘The salution then proceeds as before, except that there are more inte-
grals to be evaluated, and more constants to be determined. The
constant 4 will be of order o and will contain an o? term. B will be of
order w. Clearly g(8) is a polynomial in 8 and it is unnecessary to
actually obtain the differential equation in order to find it, as it can
be written down by inspection. But as with the quasi-static method,
if too many terms are retained, the large number of constants to be
evaluated makes the process rather cumbersome.

Tue Inpuctive CASE

The method applies, with some changes, to inductive configura-
tions. The quantity «? in (4) becomes replaced by —~? with
y2=2a?/A?% and (9) is replaced by

g0) = Asin [y(6 — x/2)] + 47 cos [v(6 — =/D)]. 24)
Since for a typical guide operated in the dominant mode, 2a%/A? is
near unity, it is better to expand around this point. Thus for the sym-
metrical case, for which the A’ term in (24) is required, the approxi-
mation to g(#) would give

g@) = A’sing + A'(0 — 7/2)(2a2/7\? — 1).

The aralysis then proceeds much as before.

(25

ComparIsON WiTH OTHER TECHNIQUES

Shestopalov [8] has analyzed waveguide diaphragms by a method
which, although apparently differing from the singular integral equa-
tion approach, is really a variant of it. He retains N higher order
modes and solves for them with Nth-order determinants whose ele-
ments are related to Fourier components of the aperture field. Hence
in terms of the amount of work involved, the additional retention of
higher order modes in the present method should be comparable.

It is perhaps worth pointing out that in the special case of wave-
guide cliaphragms the properties of Legendre polynomials can be used
to simplify and compact some of the formulas, and that many of
Shestopalov’s papers make good use of this. The real grind in prob-
lems of this sort is in expressing the integrals involved in terms of
tabulated functions. This has always seemed worth doing where it
was possible, but with modern computational tools available the
necessity has receded somewhat.

APPENDIX

The integration of (14) involves the quantity (0—=/2) cosec 6,
with cos #=s£ A tractable expression uses the subsidiary result,
which 1s readily verified,

0 — /2
T = — sk
sin @ 0

cos g&d\b
1 — s%2 1 — s cos? ¢ ¥

(A1)
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and the relevant integral becomes
f 1 f x/3 (1 — 52)112 sf cos '//d‘ﬁdf
-1 E—1n 1 — s¥%2cos?y

In the integrand add and subtract the expression sy cos ¥ /(1 -—s%?
cos? ¢). The first term becomes

_ frlz $1 COS ‘l’d‘/’ 1 (1 —_ 52)112d£
o 1 — s¥lcosty .y

(A2)

E—1

which integrates to swy(x/2—¢) cosec ¢ on using (Al) and known
results. The second term simplifies to

_ frla SCOS\b [f 1 (1 — 52)1/2115
o 1 — s¥?cos?y 11 — s%2 cos?y

,,,.fm [1 — (1 — s2cos? ¢)1/2]d
o cosy(l — s%? cos?y)

on carrying out the £ integration. This can now be integrated by
taking sin ¢ as a new variable and using standard techniques.

The evaluation of 4 in (14) requires the use of (7). Since both
sides vanish at § == /2, the limit can be taken by L’Hospital’s rule, to
give, after some simplification

1
4= oC _ g
2 1 (1 — ,’72)1[2
On inserting (15) into (1) and keeping terms to O(a#%), five integrals
appear. Some are relatively straightforward and some can be ob-
tained by differentiation with respect to s, simplification, and then
reintegration. The one requiring more attention is

1 dy 2. COS g Cos nawr/2
P(s) = f
) o (1= ; 73

in which the value of 6 has been chosen as 7/2. An integration by
parts reduces it to a consideration of

sin~ls i 2 gin 2
P = [ s () 3 gy

s 1

S

log (2s9) = (aCn/2) log s. (A3)

(Ad)

(A5)

where ¢ =y -+7/2. Now sin ~1(u) for #>1 is 7/2 plus an imaginary
term. Hence (AS) can be written

2 . o
Fi(s) = Re fo sin~1 (ﬂ;ﬁ) ; sin 2y dy

n?

=/ ® g
S S )
3 1

tn~te 2 n?

The second term cancels an integral arising elsewhere, and on putting

'/2 3 L H
Fafs) = fo sin™! (g) ; sin 2y dy

n2
we get, after some manipulation,
d ( sz) 2s f v log (22)
— (s —) = dz
ds ds 1 — s2Jy (s2 — 2212

with 2= sin y as new integration variable. The range from s to 1
gives imaginary terms which do not contribute when the real part is
taken. The rest involves

(A7)

+ log (22) gs = "1
fo (s? — )2 z=e8s

on taking z=s sin u as a new variable. )
The integrations with respect to s needed to recover F(5) from
(A7) are straightforward and eventually we get

F(s) = ’Ef [Lis(1) — Lis(s®) + log sLis(s?)]. (A8)
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Automatic Rieke Diagram Drawing System
Y. KOSUGI axp Y. NAITO

Abstract—The development of a system which provides power-
constant loci on a Smith chart automatically is presented. The system
consists of phase shifters terminated with p-i-n diodes, and a net-
work analyzer.

INTRODUCTION

In the measurement of microwave oscillators, drawing of the
Rieke diagram has been time-consuming. The system proposed here
isintended to get power-constant loci on a Smith chart automatically.
An impedance variable termination, the main part of the system, is
also described in detail. Experimental results both at .S band and
X band are presented.

IMPEDANCE VARIABLE TERMINATION

The impedance variable termination is one of the most important
components of the microwave circuit. Hitherto, some attempts have
been done to improve the characteristics of the variable termination
for the sake of easy handling [1]. But it still requires mechanical ad-
justments that have prevented the automation of some measure-
ments.

The variable termination described in the following section is a
useful element whose impedance can be electrically controlled.

When an ideal phase shifter is terminated at one-port with a
variable resistance, as shown in Fig, 1, the input impedance at the
other port can cover the area inside the Smith chart.

At microwave frequencies, the impedance of a typical p-i-n diode
changes according to the bias current as shown in Fig. 2. For the
purpose of making an impedance variable termination with a
phase shifter, the variable resistance must range from 50 Q@ to « or
09 to 50 Q. (In this case 50 Q is taken to be the characteristic imped-
ance of the waveguide.)

When a p-i-n diode is the variable resistance, there are two regions
that can be used. One of them is the low-resistance region (0 @ <r
<50 Q) and the other one is high-resistance region (50 @ <7 < «).

For general use, the impedance variable termination is required
not to excite any harmonics. In using a p-i-n diode, care should be
taken to prevent harmonics.

In the microwave region, usually a p-i-n diode does not function
as a rectifier but can be regarded as a resistance. But in the low-
frequency region of UHF, there can be observed some harmonic exci-
tation, and the harmonic excitation may be predicted from the non-
linearity of the static characteristic which can be written

R = Al [¢})]
where R is the dc resistance of the diode (in ohms), I is the bias cur-
rent (in amperes), and for a typical p-i-n diode 42=1.143, a~~—0.923.

When a small ac current is superposed on the dc bias current Io, as
shown in (2), some harmonic voltage

I =10+ I,sinet 2)

will be excited between the two terminals of the diode.
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