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Fig. 2. 13nd effect of a semi-infinite rnicrostrip line.
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[6], [7]. This quantity was calculated by using the expressions for

C,, given earlier, and the results obtained are shown in Fig. 2. The
same quantity has been computed by James and Tse [7] by using an

alternative approach, and their results are also included in Fig. 2 for
ease of comparison. It is evident that the numerical results obtained
in this short paper compare favorably with Farrar and Adams, as well
as others.

It may be usef al to quote some typical computation time for cal-
culating C(1) by (12). Typical time of the CDC G-20 computer was
about 60 s for this calculation (execution time). The above computer
is approximately ten times slower than the IBM 360/75. To minimize

the computation time for C., given in (14), the choice of 1 is impor-

tant. A numerical experiment shows that, if J~ 10 W, C(l) increases
linearly with 1. Hence the limiting process can be omitted for this

choice of 1. Furthermore, since the computation of Co requires less

than 5 s (execution time), the computation time of C., is also about

60 S.

In conclusion, the method described in this short paper has many

advantages, one of which is its numerical efficiency. Another feature
is that it is quite general, since many other types of junctions and
finite structures can be solved by the present method, either in its

present form or with some modifications. Some examples of such
structures are gaps in the uniform strip, T junction, etc., that are

currently under investigation.
Finally, it should be mentioned that Maeda [8] has recently re-

ported a method for analyzing the gap structure in the microstrip
line. The approach outlined in this short paper is believed to be

numerically more efficient, since the expression for Green’s function

in the transform domain is a closed form in contrast to a slowly con-

vergin~ series in the space domain.
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A Quasi-Dynamic Method of Solution of a Class of

Waveguide Discontinuity Problems

LEONARD LEWIN AND JAMES P. MONTGOMERY

Absfracf-It is shown that, if expansion terms of all the modes

app-iw in the Green’s function for the problem are retained, the
singular integral equation method can be made to apply by generating
a cliff ererstial equation for this integral. The solution of the differen-
tial equation is straightforward, and the inversion of the resulting
integral equation then follows standard methods. The process is

applied in detail to the case of the capacitive diaphragm, and the
results compared to the quasi-static method with correction terms.

The results are close for small guide widths, but the present method
should give superior results if the guide width permits some over-
modkg.
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INTRODUCTION

The class of problems referred to is that in which the solution can

be formulated in terms of a transversely varying aperture field or

obstacle current. Typically, it includes inductive and capacitive dia-

phragms, gratings, step discontinuities, bifurcations, inhomogeneous

waveguide junctions, and transversely magnetized ferrite bound-
aries.

Early researchers used integral equation formulations [I], [2],

sometimes coupled with solutions from known electrostatic problems
[1] - [3] to establish a solution. These solutions are known as gzlasi-

static solutions and they depend essentially on approximations of
thetype rn=(n2~2/b2 —k2)112+r.~/bfor the attenuation constant for
higher order modes. The approximation is poorest for the lowest order
modes, and correction terms involving the small quantity (I’. —nir/b)

for small n can also be incorporated into the solution.
Anextension of themethod using singular integral equations [4]

still was based on treating the lowest order modes preferentially in

this way. At the other extreme [5], quasi-optical methods based on

the high-frequency limit calculate the diffraction from edge discon-
tinuities. Mittra [6] using amodified residue calculus technique, has
extended the Wiener–Hopf type of solution to obtain good approxi-
mations to some waveguide configurations.

The present short paper indicates a somewhat different approach
based on an approximate form for the attenuation constants to be
used for all the higher order modes. The relation (brJ@~)=l

– (kb/nr)’/2 – (kb/nr)4/8 . . . enables the kernel of the integral

equation to reexpressed asatruncated series in powers of (kb/m)2to
which all thehigher modes contribute. For want of abetter name this

method will be called quasi-dynamic. As a further refinement it is

still possible to incorporate higher order correction terms involving

the small quantity (bI’+r-l-(kb /nrr)2/2– . . . ) forsmalln; and

this must in any case be done if kbis large enough to permit a lower

order mode to propagate. Theexpansion for large n is still valid and
useful, even if kb is not all that small.

THE FORM OF THE KERNEL

The difficulty in extending the singular integral equation method
to the more complex kernels here considered arises from the fact that

sums of the form ~nrn.I cos nO/nN are transcendental functions
(Clausen f unctions) for r >0, with r integral, and it is quite impracti-

cal to make needed transformations like cos o=c+sg on a term-by-
term basis. The clue to a method of dealing with them springs from
the observation that application of the operator (d/d0)2r reduces

them tother=O form, which intractable. Hence if theseriesforrnis
truncated after Nterms, the problem can be reduced essentially to

one of solving a cliff erential equation of order 2N with constant coeffi-

cients. As with the quasi-static methods, to which the present method

obviously has an affinity, the real problem then becomes one of evalu-
ating the various constants that arise, and which here appear in the
form of integrals involving tbe Clausen functions. Whereas, in the
quasi-static method, theintegrals give rise to elliptic functions, with

trigonometric and logarithmic forms as special cases, in the present
instance the functions involved are the polylogarithms [7], which,

fortunately, areeasy tohandleand are well tabulated.
As an example to illustrate this method we solve the problem of a

symmetrical capacitive diaphragm, and compare the result to the
quasi-static solution with correction terms. Although theintermedi-

ate stages seem somewhat formidable, it is encouraging to find that
the final expression for the capacitance is a quite simple expression,
which can be readily related to the quasi-static solution. The form of
aperture field is also relatively simple.

The results of this method are likely to be most useful for calcu-
lating aperture fields, mode coupling coefficients, and obstacle pa-
rameters in situations in which the quantity kb lies in the small to

intermediate range, i.e., low-frequency to slightly overmoded condi-
tions. Regular gratings are similarly analyzed, using Floquet’s

theorem to express the fields in terms of a single grating characteris-
tic.

CAPACITIVE DIAPHRAGM SOLUTION

Fig. 1 shows a parallel plate arrangement of spacing b with a dia-

phragm with aperture from y =d to b–d.
The transition to rectangular guide of width a can be made by re-

placing k by k’ = k (1 –k2/4a2) lIZ at the end of the analysis. Similarly,
r.’ and a’ have h replaced by A. in their definitions. Writing @= rd/b,
0 = ry/b, + = rry’/b, and r.= (nzrrzjbz –ka) 112 the equation to be

~,b
y, b-d.-

y,d ---

y:(j

Fig. 1. Capacitive diaphragm.

solved for the aperture field E(d) can be put in the form [4]

(3<e<7r -/3. (1)

The reflection coefficient R in the guide is given by

1 + R = ~~ “%(o)drj (2)
To

and the normalized susceptance B, one of the objects of our calcula-
tion, is related to R by

B = 2jR/(1 + R). (3)

To solve (1), differentiate with respect to /3, and replace nii/br. by

the second-order approximation

mr/br. = 1+ a2/f’#,where az = 2b2/~2. (4)

Then (1) becomes

~pm”%o) $ sin ti cos @(l + az/nZ)d~ = 0, 13<6’<7r-& (5)

In the absence of the term in a2/n2 this would be of the same form as

appears in the singular integral equation method. In the present in-
stance, however, the corresponding expression will not be zero, but
some function of 0, g(0) say, where we expect g(0) to be of order az.
Hence we can write

~,*pE(I#) $ sin W cos m#@ = g(~), p<e<r–p. (6)

If we knew g(@), (6) could be solved by standard techniques. To find
g(0), subtract (5) from (6).

-q-,%+)$’Sinti’-d+ =,69, (7)

Differentiating twice, and using (6) gives

azg = dzgjdeg. (8)

Hence

g(e) = A sinh [a(6 – rr/2)] + A’ cosh [a(O – ../2)] (9)

with A and A’ to be determined. The solution is put in this form be-

cause, in the present case of the symmetrical diaphragm, (1) is sym-
metrical about the guide center o = 7r/2, and hence g(0), which is
related to (1) by a differentiation, is anti symmetrical. By inspection
A’ is zero, and, consistent with our expansion in powers of a, only the

first power of an expansion of (9) in a need be retained. Hence

g(e) = Aa(L9 – rr/2) (lo)

to O (a’) since, as will be shown, A = O(a).
Equation (6) is now ready for solution by the singular integral

equation technique, using the relation

(11)

(As discussed in [4] the use of the above equation requires that cer-

tain integrals arising should be taken as principal values. This is im-
plicit in what follows.)

Substituting (11) into (6) and writing

COS@ = Sq, COSd = S$, S = cOs (rd/fj)

and

E(g$)dl) = F(q)dq (12)
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we get

.P—1F (q)dq – Zsg(e)— —, –l<g<l.
–171-t— sin 9

(13)

The solution is

1

[

2asA

f

1 (6 — 7r/2) (1 — $2)112
F(q) =

(1 – #)lu c’ + ~ _,
d~1 (14)

sin O f–~

with C’ arbitrary and 6 given by (12).

The integration is performed in the Appendix, and the constant A
is there derived by taking the limiting value from (7) as O-47r/2. In

terms of E(8), and a new constant C, (14) becomes

[
sin.$ sin I#J+(S2-COS2 O) ‘Iz

E(d) = c ($2_ ~os2 @)1/2
+C#’ logs log 1(l_@l/2 “ (15)

Apart from a determination of C, (15) gives the form of the aperture
field as a function of+ =rry/b.

To determine Cwernustreturnto (I), the undifferentiated form

of the integral equation, insert (15) for 23($), and carry out theindi-

cated integrations. It is here that the calculations, outlined in the
Appendix, become alittle testing. With Cdetermined (2) gives Rand
(3) the susceptance. The final result, after replacing k by k’ (or k by

k,) is

(
b,

B=; –logs+—-K-
9 2Aq2 )

(16)

where

K = L;,(l) – L~3(s2) + 2 log SL;,(SZ). (17)

The polylogarithms [7], which are well tabulated, are defined by

. s“ log (1 — x)
L;,(Z) = ~ x“/n2 = – dx

1 0 %

m

s

‘ .%(x)
L& (X) = ~ %“/%8 = — dx.

1 ox
(18)

COMPARISON WITH THE QUASI-STATIC RESULTS

The relevant formula with two correction terms included can be

found in [2, eq. (3.119)]. Taking the & correction coefficients small
so that their products can be neglected, the expression to compare
with (17) has K replaced by KO where

K, = (1 – S2)2[1 + (3s’ – 1)2/8]. (19)

Equation (17) is plotted in Fig, 2 and, on an enlarged scale, so is the

difference K–Ko. It is seen that numerical y the two expressions

behave quite similarly. The difference is greatest when s is small,
since more higher order modes are then generated.

HIGHER ORDER SOI.UTIONS

Equation (16) can be improved in two directions. More terms

could be retained in the expansion (4). Alternatively, or i n addition,
the right-hand side of (5) could be augmented with the exact form of
the lowest order modes less the dominant expansion terms ah-cad y

considered in (4). For example, in the case of the symmetric capaci-
tive diaphragm, the right-hand side of (5), instead of zero, could he
(since odd-n terms integrate to zero),

J

~fl
– As E(#I) sin 20 cos 2bdb

8

with

A2 = (2v/bFz! – 1 – a’2/4). (20)

(The transition to k’ and & has been anticipated.) This term is 0(a4)

and it would not be consistent to retain products of higher order.
Hence E(d) in (20) need be only the first term in (15), unless b is
large enough for the n =2 mode to propagate, when the additional

O(az) term does need to be retained. Apart from this case, the extra
integrations needed to cope with (20) have already been done in ob-

taining [2, eq. (3.119)], and quoting from there, with the sole differ-
ence of using Aj instead of & we get an addition to the expression in

the brackets in (16) of

Az(1 – s’)2/(1 + A,s4). (21)

The use of more terms in (4) would lead to expressions like nir/bI’.
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Fig. 2. Coefficients K and KO as a function of s.

= 1 +a2/nz+3a4/8tz4, for example. The equation for g(t?) would be-

come
d’g/d8’ – a2d2g/dO’ + 3cx4g/8 = 0. (22)

To order a“ this gives

g(o) = ‘4a(e – rr/2) + Ba’(e – 7r/2)3. (23)

The solution then proceeds as before, except that there are more inte-
grals to be evaluated, and more constants to be determined. The

constant A will be of order a and will contain an C@term. B will be of
order w. Clearly g(@) is a polynomial in 0 and it is unnecessary to

actually obtain the differential equation in order to find it, as it can
be wri tten down by inspection. But as with the quasi-static method,

if too lmany terms are retained, the large number of constants to be

evaluated makes the process rather cumbersome.

THE INDUCTIVE CASE

The method applies, with some changes, to inductive configura-
tions. The quantity a2 in (4) becomes replaced by —-y~, with
.+= 2aj/kZ, and (9) is replaced by

g(@ = A sin [7(6 – 7r/2)] + .4’ cos [7(0 – 7/2)]. (24)

Since Ior a typical guide operated in the dominant mode, 2a2/X9 is

near unit y, it is better to expand around this point. Thus for the sym-
metrical case, for which the A‘ term in (24) is required, the approxi-

mation to g(o) would give

g(e) = A’ sinff + A’(6 – r/2)( 2a’/~’ – 1). (25)

The analysis then proceeds much as before.

COMPARISON WITH OTHER TECHNIQUES

Shestopalov [8] has analyzed waveguide diaphragms by a method
which, although apparently differing from the singular integral equa-

tion approach, is real] y a variant of it. He retains N higher order
modes and solves for them with Nth-order determinants whose ele-
ments are related to Fourier components of the aperture field. Hence
in terms of the amount of work involved, the additional retention of

higher order modes in the present method should be comparable.
It is perhaps worth pointing out that in the special case of wave-

guide cliaphragms the properties of Legendre polynomials can be used

to simplify and compact some of the formulas, and that many of
Shesto palov’s papers make good use of this. The real grind in prob-

lems of this sort is in expressing the integrals involved in terms of
tabulated functions. This has always seemed worth doing where it
was possible, but with modern computational tools available the
necessity has receded somewhat.

APPENDIX

The integration of (14) involves the quantity (I9– 7r/2) cosec 0,

with cos o = s~. A tractable expression uses the subsidiary result,
which w readily verified,

e – T/2

J

r/2 COS #d@
—=—sf (Al)

sin 8 0 1 – S’.f’ cos~ #
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and the relevant integral becomes

1

JJ

“/2(1 –tz)ll~ sg cos@*dg
—

l–q 1 – szg~cosz+ “
(A2)

-1 0

In the integrand addand subtract the expression svcos#/(l–szVZ

COS2$). The first term becomes

J

’12 sqcostid$

f

1(1 — &2)1/2@
—

0 1 – S2T72COS?* _l .$-T

which integrates to srrq(sr/2-@) cosec@ on using (Al) and known
results. The second term simplifies to

J

T/2 s Cos +

[f

I (1–,gz)m~g
—

o 1 – S%72COS2$ 1d+
–11 — S?gscos~+

T

J

‘/’ [1-(1 –s2cos2*)m]di
=—-

So Cos+(l – s~#cos2*)

on carrying out the & integration. This can now be integrated by
taking sin~asa new variable and using standard techniques.

The evaluation of A in (14) requires the use of (7). Since both
sides vanish at@=r/2, thelimit can betaken by L' Hospital's rule, to
give, after some simplification

1

A=~~
f

dq
log(zsq) = (ac7r/2) logs.

2 –1 (1–772)1/2
(A3)

On inserting (15) into (1) and keeping terms to O(c@), five integrals

appear. Some are relatively straightforward and some can be ob-
tained by differentiation with respect to s, simplification, and then
reintegration. The one requiring more attention is

1

‘q i2c0sny””’2 (A4)~(s) = J_l (l–q~)m 1

in which the value of o has been chosen as 7r/2. An integration by
parts reduces it to a consideration of

where ~=#+7r/2. Now sin-l(a) for z~>l is 7r/2 plus an imaginary

term. Hence (AS) can rewritten

The second term cancels an integral arising elsewhere, and on putting

we get, after some manipulation,

d dF,

()

2s

J

‘ log(2z) ~z
——
ds ‘z = 1 – S2 o (s2 – zz)ll~

(A7)

with .z= sin+ as new integration variable. The range from s to 1
gives imaginary terms which do not contribute when the real part is
taken. The rest involves

J

$ Iog(zz)
dz=; logs

~ (S2 _ ~2)1/2

on takfngz=s sin u asa new variable.
Theintegrations with respect tos needed to recover Fz(k) from

(A7) are straightforward and eventually we get

F(s) =;[Lia(l) –L;@)+log sL;2(s2)]. (A8)
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Automatic Rieke Diagram Drawing System

Y. KOSUGI AND Y. NAITO

Abstract—The development of a system which provides power-
constant loci on a Smith chart automatically is presented. The system
consists of phase shtiters terminated with p-i-n diodes, and a net-
work analyzer.

INTRODUCTION

In the measurement of microwave oscillators, drawing of the

Rielie diagram has been time-consuming. The system proposed here

is intended to get power-constant loci on a Smith chart automatically.

An impedance variable termination, the main part of the system, is

also described in detail. Experimental results both at .S band and
X band are presented.

IMPEDANCE VARIABLE TERMINATION

The impedance variable termination is one of the most important

components of the microwave circuit. Hitherto, some attempts have
been done to improve the characteristics of the variable termination
for the sake of easy handling [1]. But it still requires mechanical ad-
j ustments that have prevented the automation of some measure-
ments.

The variable termination described in the following section is a

useful element whose impedance can be electrically controlled.
When an ideal phase shifter is terminated at one-port with a

variable resistance, as shown in Fig. 1, the input impedance at the
other port can cover the area inside the Smith chart.

At microwave frequencies, the impedance of a typical p-i-n diode

changes according to the bias current as shown in Fig. 2. For the
purpose of making an impedance variable termination with a
phase shifter, the variable resistance must range from 50 Q to co or
O ‘2 to 50 Q. (In this case 50 Q is taken to be the characteristic imped-

ance of the waveguide.)
When a p-i-n diode is the variable resistance, there are two regions

that can be used. One of them is the low-resistance region (O Q <r
<.50 Q) and the other one is high-resistance region (50 Q <r < ~).

For general use, the impedance variable termination is required

not to excite any harmonics. 1n using a p-i-n diode, care sh odd be

taken to prevent harmonics.
In the microwave region, usually a p-i-n diode does not function

as a rectifier but can be regarded as a resistance. But in the low-
frequency region of UHF, there can be observed some harmonic exci-

tation, and the harmonic excitation may be predicted from the non-
Ii nearity of the static characteristic which can be written

R = AIu (1)

where R is the dc resistance of the diode (in ohms), 1 is the bias cur-
rent (in amperes), and for a typical p-i-n diode Acx1.143, a= —0.923.

When a small ac current is superposed on the dc bias cm-rent 10, as
shown in (2), some harmonic voltage

I= IO+ I@sinuf (2)

will be excited between the two terminals of the diode.
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